IBM Journal of Research and Development
IBM Skip to main content
  Home     Products & services     Support & downloads     My account  

  Select a country  
Journals Home  
  Systems Journal  
Journal of Research
and Development
    Current Issue  
    Recent Issues  
    Papers in Progress  
    Search/Index  
    Orders  
    Description  
    Patents  
    Recent publications  
    Author's Guide  
  Staff  
  Contact Us  
  Related links:  
     IBM Research  

IBM Journal of Research and Development  
Volume 32, Number 6, Page 727 (1988)
Q-Coder
  Full article: arrowPDF   arrowCopyright info





   

Optimal hardware and software arithmetic coding procedures for the Q-Coder

by J. L. Mitchell, W. B. Pennebaker
The Q-Coder is an important new development in arithmetic coding. It combines a simple but efficient arithmetic approximation for the multiply operation, a new formalism which yields optimally efficient hardware and software implementations, and a new form of probability estimation. This paper describes the concepts which allow different, yet compatible, optimal software and hardware implementations. In prior binary arithmetic coding algorithms, efficient hardware implementations favored ordering the more probable symbol (MPS) above the less probable symbol (LPS) in the current probability interval. Efficient software implementation required the inverse ordering convention. In this paper it is shown that optimal hardware and software encoders and decoders can be achieved with either symbol ordering. Although optimal implementation for a given symbol ordering requires the hardware and software code strings to point to opposite ends of the probability interval, either code string can be converted to match the other exactly. In addition, a code string generated using one symbol-ordering convention can be inverted so that it exactly matches the code string generated with the inverse convention. Even where bit stuffing is used to block carry propagation, the code strings can be kept identical.
Related Subjects: Coding theory; Coding, arithmetic; Image processing