8-bit Precision In-Memory Multiplication with Projected Phase-Change Memory

In-memory computing is an emerging non-von Neumann approach in which certain computational tasks such as matrix-vector multiplication are performed using resistive memory devices organized in a crossbar array. However, the conductance variations associated with the memory devices limit the precision of this computation. Here, we demonstrate that the so-called projected phase-change memory (Proj-PCM) devices can achieve 8-bit precision while performing scalar multiplication. The devices were fabricated and characterized using electrical measurements and STEM investigation. They are found to be remarkably immune to conductance variations arising from structural relaxation, 1/f noise and temperature variations. Moreover, it is possible to compensate for the temperature-dependent conductance variations in a crossbar array using a simple model. Finally, we experimentally demonstrate a neural network-based image classification task involving 30 such Proj-PCM devices.

By: I. Giannopoulos, A. Sebastian, M. Le Gallo, V.P. Jonnalagadda, M. Sousa, M.N. Boon, and E. Eleftheriou

Published in: 2018 IEEE International Electron Devices Meeting (IEDM), IEEE, p.doi:10.1109/IEDM.2018.8614558 in 2018


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to reports@us.ibm.com .