IBM Research Report

A Framework for Automated Testing of JavaScript Web Applications

Shay Artzi¹, Julian Dolby¹, Simon Holm Jensen², Anders Møller², Frank Tip¹

¹IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

²Aarhus University
Denmark
A Framework for Automated Testing of JavaScript Web Applications

Shay Artzi
IBM Research
artzi@us.ibm.com

Julian Dolby
IBM Research
dolby@us.ibm.com

Simon Holm Jensen
Aarhus University
simonhj@cs.au.dk

Anders Møller
Aarhus University
amoeller@cs.au.dk

Frank Tip
IBM Research
ftip@us.ibm.com

ABSTRACT

Current practice in testing JavaScript web applications requires manual construction of test cases, which is difficult and tedious. We present a framework for feedback-directed automated test generation for JavaScript in which execution is monitored to collect information that directs the test generator towards inputs that yield increased coverage. We implemented several instantiations of the framework, corresponding to variations on feedback-directed random testing, in a tool called Artemis. Experiments on a suite of JavaScript applications demonstrate that a simple instantiation of the framework that uses event handler registrations as feedback information produces surprisingly good coverage if enough tests are generated. However, by also using coverage information and read-write sets as feedback information, a slightly better level of coverage can be achieved, and sometimes with many fewer tests. The generated tests can be used for detecting HTML validity problems and other programming errors.

1. INTRODUCTION

JavaScript [6, 13] plays a central role in modern web applications. Although originally designed for simple scripting, modern JavaScript programs are complex pieces of software that involve intricate communication with users and servers. Compared to languages such as Java and C#, relatively little tool support is available to assist JavaScript programmers with testing their applications. In current practice, JavaScript programmers construct test cases either manually or using unit testing tools with capture-replay facilities such as Selenium, Watir, and Sahi. These tools provide functionality for recording the GUI actions performed by a user in test scripts, for running a suite of tests, and for visualizing test results. However, even with such tool support, testing remains a challenging and time-consuming activity because each test case must be constructed manually. Obtaining reasonable coverage of an application may be difficult because of JavaScript’s event-driven style, which often gives rise to a combinatorial explosion in the number of possible executions, and because of JavaScript’s extremely dynamic nature [20], which makes it difficult for users to understand how to write test cases that exercise a particular feature of an application.

The goal of our research is to develop scalable and effective algorithms for automated testing of JavaScript applications to discover common programming errors of various kinds, including uncaught exceptions (e.g., runtime errors resulting from the use of undefined in a dereference or a function call), unusual type coercions or misuses of the browser’s built-in libraries, invalid HTML, AJAX HTTP errors, and violation of assertions. A prerequisite for discovering such errors is that the generated tests obtain high code coverage, which we focus on in this paper. We envision automated testing used as part of the development process of future JavaScript applications to improve code quality and reduce development time.

Several previous research projects have explored automated testing of JavaScript applications. The Crawljax/Atusa project [17, 18] uses dynamic analysis to construct a model of an application’s state space, from which a set of test cases is generated. This work relies on a heuristic approach for detecting active user-interface components, and crawls these in some random order. A limitation of this heuristic approach is that it may be unable to detect all relevant event handlers (as is evidenced by the fact that the tool provides users with a domain-specific language to specify how to crawl an application). The Kudzu project [22] combines the use of random test generation to explore an application’s event space (i.e., the possible sequences of user-interface actions) with the use of symbolic execution for systematically exploring an application’s value space (i.e., how the execution of control flow paths depends on input values). Kudzu relies on an elaborate model for reasoning about string values and string operations which are frequently manipulated by JavaScript applications. However, it remains to be determined if high code coverage can perhaps be achieved with much simpler techniques, without requiring a sophisticated string constraint solver.

We present a framework for automated testing of JavaScript web applications. The framework takes into account the idiosyncrasies of JavaScript such as its event-driven execution model and interaction with the Document Object Model (DOM) of web pages. The framework is parameterized by: (i) an execution unit to model the browser and server, (ii) an input generator to produce new input sequences, and (iii) a prioritizer to guide the exploration of the application’s state space. By instantiating these parameters appropriately, various forms of feedback-directed random testing (e.g., in the spirit of Randoop [19]) can be performed. Here, the idea is that
when a test input has been generated, the system executes the application on that input and observes the effects, which can then be used to guide the generation of additional test inputs.

We implemented the framework in a tool called Artemis\(^1\), and created several feedback-directed random test generation algorithms by instantiating the framework with different prioritization functions and input generators.

The contributions of this paper can be summarized as follows:

- We present a flexible framework for automated feedback-directed test generation for JavaScript web applications.
- By instantiating the framework with different prioritization functions and input generators we obtain several practical test generation algorithms: events monitors the execution to collect relevant event handlers, const additionally collects constants, cov also considers coverage, and all additionally takes reads and writes of variables and object properties into account.
- An evaluation on a suite of JavaScript applications shows that, surprisingly, even the simple events algorithm achieves 69% coverage on average when 100 tests are generated, which significantly exceeds the 38% coverage obtained by only loading each application’s main page. Furthermore, with the extended use of feedback information in the const, cov, and all algorithms a slightly higher level of coverage (up to 72%) can be reached, and sometimes with many fewer tests. We also report on HTML validity errors and execution crashes detected by the automatically generated tests.

The remainder of this paper is organized as follows. First, we present a motivating example in Section 2. Then, Section 3 presents the framework, and Section 4 describes several algorithms that were obtained by instantiating the framework with suitable prioritization functions and input generators. Section 5 presents our tool, Artemis, and its evaluation on a range of JavaScript applications. Section 6 discusses related work on automated testing. Finally, Section 7 concludes and mentions ideas for future work.

2. MOTIVATING EXAMPLE

The JavaScript application shown in Figure 1 is a simplified version of an example from www.dhtmlgoodies.com that demonstrates dynamic loading of contents using AJAX.

![Figure 1: A simple JavaScript program in an HTML page.](image)

It first registers an event handler for the load event (line 42). That event handler (lines 32–41) in turn registers event handlers for mouseover and click events for each li element appearing in the element with ID articles. The mouseover events occur when the user hovers the mouse over the elements, causing the className to be modified thereby changing the CSS properties (lines 10–21). The click events occur when the user clicks on the elements, which causes the contents of the element with ID content to be replaced by the appropriate article being selected (lines 22–31). To save space, we omit the associated CSS stylesheet and the file ajax.js that contains basic AJAX functionality.

This simple example shows how triggering relevant events can be crucial for exercising JavaScript applications. Lines 32–42 are executed just by loading the page, without triggering any actual events. One way to cover more code is to subsequently trigger a click event on one of the li elements. That will execute lines 22–31, except, however, line 28, which requires yet another click event to be triggered on another li element. Also note that line 25 is not executed directly but only via an AJAX response event that is made possible by the call to the AJAX library on line 26. Obtaining full coverage of lines 10–21 requires several additional events, in this case of type mouseover, to be triggered at the right nodes.

\(^1\)Artemis is the twin sister of Apollo [2], a tool for automated testing of PHP applications.
Simply triggering sequences of events produces an intractable number of possible executions, and our tool relies on prioritization functions to decide what sequences will yield the best tests. The code of Figure 1 illustrates two such metrics that we will define precisely later. First, observe that `mouseoverArticle` reads the local variable `clicked` and `selectArticle` writes that local variable. Hence, it seems plausible that after triggering `selectArticle`, the system should next try `mouseoverArticle` again to see if anything different happens. In Section 4.1, we introduce a prioritization function that considers such information about Read/Write Sets to identify sequences of events that are likely to increase coverage. Second, note that `mouseoverArticle` has several conditions, and hence will likely need to be executed multiple times to cover all the code. In general, calling a function is more likely to increase coverage as it contains more conditional cases that have not been executed yet. This is addressed in Section 4.1 by a prioritization function that considers Coverage to direct test generation.

3. THE FRAMEWORK

When a browser loads a web page, it parses the HTML contents into a DOM structure and executes the top-level JavaScript code. This may involve registration of event handlers that may be triggered later and cause more code to be executed. Event handlers are executed one at a time in a single-threaded fashion. Our framework is tightly connected to this execution model.

3.1 Input Structure

Compared to automated test generation for other languages such as, e.g., C [24] or PHP [2], the input to a JavaScript application has an unusual structure. Each event is a simple record for which all possible parameter values are valid (i.e., there are no application-specific invariants that must be satisfied). On the other hand, we are faced with highly nondeterministic sequencing of events. The following definitions characterize the notion of a test input to a JavaScript application accordingly.

DEFINITION 1. An event consists of: (i) an event parameter map, which is a finite, partial map from strings (parameter names) to numbers, booleans, strings, and DOM nodes, (ii) a form state map, which provides string values for HTML form fields, and (iii) an environment, which holds values for the current time of day, the size of the screen, and various other constituents of the browser’s state that can be controlled by the user to some extent.

DEFINITION 2. A test input consists of (i) a URL to a web page, (ii) an entry state that describes the state of the server (e.g., databases and session data) and the local browser (e.g., cookies), and (iii) a sequence of events (according to Definition 1).

Among the parameters in event parameter maps are the type parameter describing the kind of event, and, in case of a UI event, the target parameter referring to the node where the event occurs. References to DOM nodes in test inputs are expressed as an access path from the global object (window) to the node object, for example `window.document.childNodes[1].childNodes[8]`. Our notion of events encompasses not only activities performed by the user, but also timer events and AJAX callbacks.

3.2 Execution Model

Some web applications consist of a single web page that is modified dynamically by the JavaScript code as the user interacts with it. Other applications are divided into multiple pages that link to each other, either explicitly with HTML `` tags or implicitly by JavaScript code that modifies `window.location`. Our approach discovers such URLs to other pages during the execution and uses them to create new test inputs.

JavaScript applications may also involve multiple interconnected windows and frames shown simultaneously within the same browser. Our algorithm starts with the URL for the main window. When the algorithm executes test inputs for that URL, other windows and frames may be created in the process, and the execution unit manages all of them as a single, combined JavaScript DOM structure.

Because of the event capturing and bubbling mechanisms in JavaScript [23], a single user event may result in multiple event handlers being executed, and the event may be triggered at a different node than where event handlers have been registered. All execution is monitored to collect, in particular, registration and removal of event handlers. This results in the construction of partially initialized event parameter maps that contain the event type (as the parameter named type) and the node where the event handler is registered (the parameter `currentTarget`). The remaining constituents of the event parameter maps that are controlled by the user and not by the program (for example, the `target` property) are filled in later.

3.3 Algorithm

Figure 2 shows pseudo-code for our main algorithm, along with a summary of key operations performed by the algorithm. It takes as input a URL `u_0` of the initial web page to be tested and an entry state `S_0`. The algorithm is parameterized by: (i) an execution unit `E` that models the browser and the server, (ii) a test input generator `G` that can produce new event sequences, and (iii) a prioritizer `P` that guides the exploration. We do not detail how `E`, `G`, and `P` work at this point. In Section 4 we present several instantiations of the framework that correspond to variations on random testing.

The algorithm (Figure 2) maintains a set `Results` of test inputs and error messages that have been generated, a set `VisitedStates` of states that have been visited, and a priority queue `Worklist` containing test inputs that have been generated but not yet executed. Initialization of these data structures takes place on lines 2–4.

The algorithm starts by creating an initial test input on line 5, which is added to the worklist with an appropriate priority using an auxiliary procedure `add` (lines 42–43). This initial test input consists of the URL `u_0` of the initial web page, the entry state `S_0`, and the singleton sequence `[[type = "main"]], [b_out]`. Here, `main` is a pseudo-event type denoting the JavaScript code that constructs the HTML DOM structure and executes the top-level script code, followed by the `onLoad` event handler (and related handlers, such as `DOMContentLoaded`). The initial form state map is empty, denoted `[]`, and the browser environment is set to an initial, arbitrary state `b_out`.

The algorithm then enters an iterative phase (lines 6–39) that continues until the worklist is empty or the allotted time is spent. The execution of each test input from the worklist starts by setting the state of the browser and the web server (line 9) and loading the test input URL (line 10). The execution of the event sequence is then performed by `E` (lines 11–16).

On line 17, a pair `c, E.getMessages()` is added to `Results` containing the test input that was used in the current execution and a description of any execution errors that were encountered during that execution. This may involve, for example, checking that the current page DOM consists of valid HTML. The loop on lines 18–20 recomputes the priorities for all entries in the worklist. The priorities may have changed as a result of new information that was collected during the previous execution.

If the resulting state has not already been visited (line 26), new test inputs are generated in three ways: (i) by modifying the last
event in the current test input (producing an event sequence of the same length, but with different parameters), as shown on line 22, (ii) by extending the current test input with a new test (producing a longer event sequence), as shown on line 31, and (iii) by starting from a different page URL, as shown on line 36. On line 31, \(G . \) \(\text{generateNew}(p') \) creates an event from the given partially initialized event parameter map \(p' \) that was created by the call to \(G . \) \(\text{getEventRegistrations}() \), based on the current state of the execution unit. On line 22, the call \(G . \) \(\text{generateVariants}(s_n) \) may modify the event parameter map of \(s_n \) (for example, corresponding to the situation where the user presses a different keyboard button), the form state map (if the user changes a form field), and the environment (when the time has changed). The generation and modification of events may be done randomly or using knowledge obtained during previous executions.

The functions \(E . \) \(\text{hasFatalErrors}() \) and \(E . \) \(\text{hasURLChanged}() \) are used on line 28 to prevent the extension of event sequences that lead to runtime errors or change the page URL. The operation \(E . \) \(\text{getURLs}() \) returns a set of URLs collected during the execution, which are used to explore other pages of the application.

Finally, on line 40 the algorithm returns the computed set of pairs of test inputs and error messages.

The algorithm can in principle generate all possible test inputs and exercise all parts of the JavaScript application that are reachable by a single user, relative to the entry state. (We leave the generalization to multiple users to future work.) In practice, as we shall see in Section 5, the success of the algorithm depends on the specific choices made for \(E, G, \) and \(P \), which determine to what extent the algorithm is capable of producing “interesting” sequences of events that yield high coverage.
4. FEEDBACK-DIRECTED RANDOM TESTING

This section shows how the framework of Section 3 can be instantiated with a suitable execution unit E, prioritizer P, and input generator G to obtain concrete test generation algorithms. Specifying an execution unit E requires description of: (i) what execution information is recorded by E.triggerEvent (e.g., information about coverage and registered event handlers), and (ii) which kinds of runtime errors are detected by E.triggerEvent and E.checkState. Other aspects of the execution unit will be discussed in Section 5.1.

The heuristics presented in this section are feedback-directed in the sense that the generation of new test inputs is guided by information gathered during executions of the application on previously generated test inputs.

4.1 Prioritization Functions

We define $P.priority(c)$ for a test input $c = (u, S, s_1 \cdots s_n)$ as the product\(^2\) of functions $P_i(c)$ for particular heuristics, as defined below. Also, let e_i denote the set of event handlers (i.e., JavaScript functions) that are executed when the i'th event is triggered during the execution of c.

Default Strategy

We begin by defining a naive prioritization function that assigns the same priority to all sequences of events:

$$P_0(c) = 1$$

In this strategy, the execution unit E keeps track of event handlers as they are registered, unregistered, and executed. When the algorithm discovers a new possible sequence of events on lines 31 and 22 of Figure 2, these are added to the worklist with the same priority, 1. Then, since all worklist items have equal priority, the call to removeNext on line 7 will randomly select an item, thus ensuring that each has the same chance of being selected.

Coverage

Intuitively, executing sequences of event handlers for which we already have nearly 100% code coverage is likely to be less fruitful than executing sequences of events for which coverage is low. To take this into account, we define a prioritization function that prefers sequences with relatively low branch coverage in their constituent events.

To this end, the execution unit E is extended to keep track of the set of branch points in each event handler e. Here, a branch point is either the entry of an event handler, or a location in the source code from where control flow can proceed to two or more locations, based on some condition. A branch of a branch point is covered when it has been executed. For a set of event handlers e, we use $cov(e)$ to denote the number of covered branches in e divided by the total number of branches that have been discovered so far in e. Both these numbers may increase when more branch points are discovered to be reachable in executions of e. A prioritization function can now be defined as follows:

$$P_1(c) = 1 - cov(e_1) \times \cdots \times cov(e_n)$$

Note that all sets defined in this section, like $cov(e)$, do not only contain information for the given event handlers, but also for all functions transitively invoked by the handlers.

Read/Write Sets

Sometimes, code in an event handler can only be covered if a property is set to an appropriate value by a previously executed event handler. To account for this, we want to define the priority of a sequence of events s_1, \ldots, s_n to be proportional to the number of properties that is known to be read by s_n and that are also known to be written during the execution of at least one of s_1, \ldots, s_{n-1}. To this end, we extend the execution unit E so that, for each event handler set e, it keeps track of sets $read(e)$ and $written(e)$ of names\(^3\) of variables and properties that were observed to be read and written, respectively, during executions of event handlers from e. We can now define the prioritization function as follows:

$$P_2(c) = \frac{|\{written(e_1) \cup \cdots \cup written(e_{n-1})\} \cap read(e_n)| + 1}{|read(e_n)| + 1}$$

Here, the term “+1” in the numerator and denominator is introduced to avoid divisions by zero in case no reads or writes have been observed in event handlers.

Other Prioritization Functions

We also experimented with prioritization functions that assigned lower or higher priorities depending on the length of the sequence of events s, and depending on the number of variants of s (same sequence of events, but with different parameter values) that executed previously. As the results obtained with these heuristics were inconclusive, we will not discuss them in detail.

4.2 Input Generators

We now discuss two alternative implementations of the input generator G.

Default Strategy

Generating new events is done by G.generateNew on line 31. This involves completing the event parameter map and giving values to all form fields. The default input generation strategy, named G_0, chooses a reasonable default value for event parameters. For instance, 0 is the default value for the button parameter of a new mouse click event, meaning that the left button was clicked. For simplicity, the currentTarget parameter is always set equal to target in the basic strategy, meaning that events are triggered at the same nodes where the event handlers are registered (see the discussion of capturing/bubbling in Section 3.2). Form fields are set to the empty string for string inputs, and unselected for selection elements.

Variants of an already executed event are created by G.generateVariants on line 22. In the default strategy, randomly chosen values are used for both event parameters and form fields. We seed the random generator with values taken from a global set of constants harvested from the program source. A single new variant is produced in each invocation.

Dynamically Collected Constants

In the advanced input generation strategy, named G_1, the execution unit E is extended to track constants. For each event handler e, the execution unit maintains a set $const(e)$ which contains all constants encountered while executing e. In this strategy, G.generateVariants

\(^2\)The weighting between the various heuristics and the constants involved can be adjusted, of course, but the simple approach taken here already appears to be quite effective in practice, as discussed in Section 5.

\(^3\)To simplify the implementation we only store the name of the variable or property accessed. While this opens up the possibility of sets containing the same string while actually referring to different variables or properties, this has not posed a problem in our experiments.
makes use of these dynamically collected sets of constants to complete event parameter maps. When generating a variant of an event sequence $s = s_1 \cdots s_n$, we choose values for form fields and event parameters from the set $const(s_n)$. This makes the choice of constants more targeted compared to the basic strategy as only constants actually observed during executing are used, and because a separate set of constants is used for each event handler.

4.3 Algorithms

We will consider four feedback-directed test generation algorithms that we will name events, const, cov, and all for convenience. These algorithms were constructed by instantiating the framework of Section 3 with the prioritization functions and input generators presented above, as indicated in Table 1. Similar to previous work [22], we use the amount of code loaded by the initial page (triggering only the `main` pseudo-event) as a baseline for comparison and use `initial` to refer to this “algorithm”.

For the example from Figure 1 the algorithm detects all event handlers during the first iteration. Using the `all` algorithm, 96% coverage is obtained after 11 iterations, when only line 14 remains uncovered. This particular line requires a subtle combination of click and `mouseover` events, which is found after additional 17 iterations, resulting in 100% coverage after a total of 3 seconds of execution. In comparison, the simpler algorithm `events` obtains full coverage typically after around 35 iterations, and `initial` obtains only 40% coverage. Since the framework randomly selects work list entries among those with the highest priority, the exact iteration numbers here vary slightly when running the tool.

5. IMPLEMENTATION AND EVALUATION

This section presents our implementation and an evaluation of the events, const, cov, and all algorithms, as defined in Section 4.3.

5.1 Implementation

We implemented the framework and algorithms in a tool called Artemis, based on a modified version of the Rhino JavaScript interpreter that records information about event handlers, coverage information, constants and read/write sets. We use the Envyjs library for modeling the browser environment, which enables us to bypass all visual rendering and simulate event delays without actual delays during execution. Artemis keeps track of an application’s browser state (cookies and server state, so that these can be reset before executing the application on a new input. Artemis server state re-setting is presently restricted to PHP session state (while using the Apache web server), and database state.

We comment on a few key implementation details: (i) the check on line 26 relies on hashing to efficiently compare states; this check is approximate (e.g., we choose to ignore the concrete values of CSS properties) but we consider it unlikely that this affects coverage significantly, (ii) for server-based applications, initial server state (including a populated database, if needed) must be provided by the user, (iii) Artemis simulates a consistent temporal ordering between events, and inserts some random (simulated) delays to trigger time-dependent behaviors.

With respect to programming errors, Artemis currently detects several types of runtime errors when `E.triggerEvent` is invoked, including dereferencing `null` and `undefined`, and invoking values that are not functions. Invalid HTML is detected when `E.getMessages` is called. In other words, HTML is checked after each event handler has completed, not during execution when the page is allowed to be temporarily invalid.

5.2 Research Questions

Our primary objective is achieving good code coverage. In addition, we are interested in detecting programming errors such as invalid HTML and runtime errors. In the remainder of this section, our goal is to answer the following research questions:

- Does the `events` feedback-directed algorithm achieve significantly better coverage than `initial`? If so, then the feedback-directed framework itself with just the default instantiation is useful.
- What level of code coverage is achieved by each of the test generation algorithms under consideration, when each is allowed to generate the same number of tests?
- How quickly does each of the feedback-directed algorithms converge on the maximal coverage that it will achieve?
- How many HTML validity errors and runtime errors are detected by the different algorithms?

5.3 Experimental Methodology

Measuring code coverage of JavaScript applications is challenging for several reasons: (i) JavaScript code in the wild is often compacted, which in particular removes line breaks, making line coverage meaningless, (ii) code can be dynamically generated within the browser, either explicitly using, e.g., `eval`, or implicitly by dynamic construction of, e.g., script tags, and (iii) code can be generated dynamically on the server, for example by PHP or Java code. Thus, it is not obvious how to associate meaningful source location information with individual code fragments. This is problematic as computing a coverage percentage requires us to determine how many lines have been executed relative to the total number of executable source lines.

Other work on automated testing for JavaScript is not very explicit about how coverage is measured [18,22], which makes direct comparisons difficult. We choose to perform the measurements as follows: (i) we use original, non-compacted code where available and pretty-print the code otherwise before testing, (ii) JavaScript code that is dynamically generated within the browser is simply disregarded from the measurements. This has little effect on our benchmarks (see Section 5), where the amount of executed dynamically generated code never exceeds one JavaScript statement, (iii) we rely on the user to specify the URLs of all the .html and .js files that contain the application’s JavaScript code. Known libraries, such as jQuery, are always excluded. The execution unit can then measure which lines in which files have been executed by the tests to calculate line and branch coverage. Note that the purpose of step (iii) above is only to ensure a well-defined measure of total coverage by including all code that could possibly be reached. While the `cov` and `all` algorithms uses coverage information to guide test generation, they only use such information about

Table 1: Test generation algorithms. The prioritization functions and input generators are the ones defined in Sections 4.1 and 4.2, respectively.

<table>
<thead>
<tr>
<th>prioritization function</th>
<th>input generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>P_0</td>
</tr>
<tr>
<td>const</td>
<td>$P_0 \times Q_1$</td>
</tr>
<tr>
<td>cov</td>
<td>$P_0 \times P_1 \times P_2$</td>
</tr>
<tr>
<td>all</td>
<td>$P_0 \times P_1 \times P_2$</td>
</tr>
</tbody>
</table>

5http://www.envyjs.com

4http://www.mozilla.org/rhino
already executed code. If the user is not interested in total coverage but only in producing the test inputs, step (iii) can be skipped.

We assume that the user has full control over the application being tested, not only to compute coverage as discussed above, but also to be able to restore the server state in E.load. In contrast, previous approaches (e.g., [22]) ignore JavaScript files that are not reached during the exploration, and are run against a live server, without resetting the server state between executions, thereby making their results difficult to reproduce and compare. One drawback to our approach is that it requires access to the entire application, including any server-side code, which may be unavailable, or which may require significant effort to install. Thus, we cannot apply Artemis to, e.g., FaceBook Chat since the entire application source code is not available to us\(^1\).

5.4 Benchmarks

Table 2 shows the subject JavaScript programs on which we evaluate the test generation algorithms. All of these programs are publicly available and represent a variety of different types of JavaScript programs that use the DOM API to manipulate the page. All the programs are interactive and event-driven in nature. The benchmarks include programs (3dModeller, FractalViewer) that use newer HTML5 features such as the canvas element, and AjaxPoll has a server side component written in PHP. All benchmarks and results and the complete example from Section 2 are available at http://www.brics.dk/artemis.

5.5 Coverage

Table 2 also shows, for each benchmark, the percentage of executable lines of code covered by the initial algorithm, and the percentage of code covered by each of the events, const, cov, and all algorithms after generating 100 tests. Two conclusions are immediately obvious:

- On average, the initial algorithm achieves 38% coverage, which is significantly less than the average coverage achieved by events (69%), const (69%), cov (71%), and all (72%).
- The coverage percentages achieved after 100 generated tests are remarkably similar for the events, const, cov, and all algorithms, with the difference exceeding 1% in only three cases: On DynamicArticles, cov achieves 75% vs. 82% for the other three algorithms, on FractalViewer, cov and all achieve 75% coverage vs. 63% for events and const, and on HTMLEdit, all achieves 63% coverage, which is significantly better than the 53% reached by events and const.

While Table 2 shows that the four feedback-directed algorithms achieve nearly identical coverage after 100 generated tests in nearly all cases, the question remains how the algorithms fare when fewer tests can be generated. To answer this question, Figure 3 shows, for each of the benchmarks and for each of these algorithms, the coverage achieved as a function of the number of generated tests. From these charts, it is clear that cov and all sometimes achieve their maximal coverage with many fewer tests than events and const. For example, on 3dModeller, all four algorithms achieve the same maximal coverage of 74%, but all requires only 15 tests to reach this level, whereas cov requires 45 tests, const requires 80 tests, and events even 85 tests. Similar effects can be observed on several other benchmarks. On the other hand, for some other benchmarks (e.g., Pacman, DragableBoxes) the behavior of the four algorithms is very similar. The Pacman benchmark is a bit of an outlier with only 44% coverage reached by all algorithms. This is due to the fact that Pacman is an interactive game that involves behaviors that are only triggered by complex sequences of events and/or timeouts.

5.6 Programming Errors

The last three columns of Table 2 show the number of HTML errors and execution errors that were observed in each benchmark, for the initial algorithm, and for events and all after 100 generated tests. As can be seen from these results, HTML errors were observed in all benchmarks, but only one execution error was found (a dereference of undefined, in Homeostasis). In several cases, events and all find significantly more HTML errors than initial. Interestingly, this is even the case for Pacman, where twice as many HTML errors are found despite the fact that these algorithms achieve only 1% more coverage than initial. Note also that the sole execution error was not found by initial, reaffirming that it is worthwhile to test parts of an application that can be reached only after the initial page load.

5.7 Performance

The algorithms presented in this paper are quite efficient. On each of our benchmarks, generating 100 test inputs with any of the algorithms under consideration required at most 2 minutes. All experiments reported on in this paper were conducted on a PC with a 3.2Ghz CPU and 2GB of memory, running Linux.

5.8 Summary

In summary, our conclusions of the experiments are:
Figure 3: Coverage computed for each of the benchmarks, as a function of the number of generated tests.
Each of the events, const, cov, and all algorithms achieves significantly better coverage (69%, 69%, 71%, and 72%, on average) than initial (38% on average).

- While the coverage achieved by events, const, cov, and all after generating 100 tests tends to be very similar, cov and all converge on their result significantly faster in several cases.
- The techniques find HTML validity errors in all benchmarks, but all and events find significantly more than initial. Only one execution error was found, and only the feedback-directed algorithms managed to find it.

5.9 Threats to Validity
There are several reasons why the presented results might not generalize. Our own most significant concern is that the selected benchmarks might not be representative of real-world JavaScript programs, because they are small, or because they lack a significant server-side component. With respect to representativeness, we are not aware of any bias in selecting these particular programs, some of which have been analyzed by other researchers as well. With respect to their sizes, it seems that the average JavaScript program is significantly smaller than the average Java or C program, and in our experience, the sizes of the applications that we analyzed, though small, are fairly typical of JavaScript programs without a significant server side.

6. RELATED WORK
Our framework is related to the feedback-directed random testing technique by Pacheco et al. [19], implemented in a tool called Randoop. In their approach, which targets object-oriented APIs and not JavaScript web applications, test inputs are sequences of method calls. Such test inputs are constructed, starting from the empty sequence, by extending an existing test input with a new method call using parameters obtained during previous calls. Instead of method call sequences, we consider event sequences as test inputs. A key difference is that their approach assumes a fixed collection of methods involved in the test inputs, whereas our technique in a feedback-directed manner needs to discover which events are available since event handlers can be added and removed during execution. Also, although we focus on random testing in this paper, our general framework does permit more general forms of feedback, such as combined concrete and symbolic execution [7,22,24], which we plan to investigate in future work.

Saxena et al. [22] present an automated approach for testing JavaScript applications, implemented in the tool Kudzu. It combines the use of random test generation to explore the application’s event space (i.e., the possible sequences of user-interface actions) with the use of symbolic execution for systematically exploring an application’s value space (i.e., how the execution of control flow paths depends on input values). The main goal of their work is to find code injection vulnerabilities that result from untrusted data provided as arguments to, for example, eval. The symbolic execution part relies on an elaborate model for reasoning about string values and string operations. In contrast, our framework does not divide the test input into an event space and a value space, and it permits random test generation and feedback-directed mechanisms to be combined less rigidly. In particular, our framework is feedback-directed also for the event space. Most importantly, although a direct comparison is not possible because of differences in experimental methodologies, as discussed in Section 5, our algorithms succeed in obtaining high code coverage without the use of a sophisticated string constraint solver. One consequence of the complexity of the approach by Saxena et al. can be seen in the experimental results reported in [22], which use a timeout of 6 hours.

In contrast, we operate with much shorter test generation times of only a few minutes (see Section 5).

The Crawljax tool by Mesbah et al. [17] applies dynamic analysis to construct a state-flow graph that models the states of an AJAX application’s user-interface and the transitions between these states. From this model, a set of equivalent static pages can be generated that can be used for various applications (e.g., applying search engines to their content, performing state-based testing, etc.). Crawljax relies on a heuristic approach for detecting “clickables”, i.e., elements of the DOM that may correspond to active user-interface components, and crawls the application by exercising these clickables in some random order. In contrast, our technique monitors the code of an application as it executes and is capable of detecting when event handlers are registered. Crawljax does not require modifications to the JavaScript interpreter, but its heuristics-based approach may be unable to detect all event handlers (as is evidenced by the fact that the tool provides users with a domain-specific language to specify how to crawl an application) or recognize when event handlers are active. Furthermore, our feedback-directed technique is capable of exploring the state space of an application more effectively by detecting when sequences of events are likely to trigger interesting program behaviors. The approach by Duda et al. [5] also builds finite-state models of AJAX applications. It uses a fixed, breadth-first heuristic and is not feedback-directed.

In later work, Mesbah and van Deursen describe Atusa [18], a tool that relies on Crawljax to create a model of the state space of an AJAX application. Then, Atusa can check this state space model for a number of common problems, including DOM invariants such as: situations where the application causes the DOM to be malformed (corresponding to a web page with malformed HTML), situations where the DOM contains error messages such as “404 Not Found” and state machine invariants such as dead clickables (corresponding to URLs that are permanently unavailable) and situations where pressing the browser’s back-button results in inconsistent behavior.

The event driven nature of JavaScript web applications is similar to traditional GUI applications, which also rely on user-triggered events to drive the program. Memon has described an approach to automated testing of GUI applications that consist of hierarchically organized modal dialogs [16]. In later work, Memon and Yuan employed execution feedback to enhance coverage by taking interactions between event handlers into account and refining test cases iteratively in batches [25,26]. Although the underlying structure of the GUI application code is different compared to JavaScript applications, it may be possible to adapt their notion of event semantic interactions into our general framework, which we will explore in future work. This idea has also been used in a semi-automated approach to state-based testing by Marchetto et al. [14,15].

Static analysis for JavaScript has emerged as a complementary technique for detecting errors [8,9,12], however this direction of work is still at an early stage. The dynamic nature of JavaScript [20], such as runtime code generation with eval and runtime HTML parsing with innerHTML, makes it difficult to create precise and scalable error detection tools based on static analysis alone. Yet another approach to finding errors in JavaScript applications is contract-driven testing [10], which, unlike our approach, requires the programmer to provide extensive formal contracts.

A central aspect of our framework is its ability to support many variations of prioritization and use of feedback. The topic of prioritization has been studied extensively for other domains than JavaScript, for example by Rothermel et al. [21] and Bryce and Memon [4]. Our read/write sets heuristic can be seen as a variant of the technique by Boonstoppel et al. [3].
7. CONCLUSION AND FUTURE WORK

The main contribution of this paper is a framework for feedback-directed testing of JavaScript applications. We implemented the framework in a tool called Artemis, and created several effective test generation algorithms by instantiating the framework with different prioritization functions and input generators that employ simple feedback mechanisms. Our experimental results show that the basic algorithm, events, produces surprisingly good coverage (69% on average) if enough tests are generated. However, if test generation is directed by coverage information and read-write sets, as embodied in our cov and all algorithms, a slightly better level of coverage (72% on average) can be achieved, and sometimes with many fewer tests. We have also demonstrated how the generated tests can be used for detecting programming errors, such as HTML validity errors and crashes.

There are many possible avenues for future work, including other feedback-directed testing strategies, such as a suitable variation on symbolic execution [7, 24]. We are also interested in integrating Artemis with Apollo [2] to extend automated testing to applications that span both server and client code, and in generalizing the framework to accommodate for multiple concurrent users that interact via a shared server. Furthermore, the framework can provide a basis for studying fault localization techniques [1], test suite minimization [11], and detection of security vulnerabilities [8, 9, 22] for JavaScript applications. Our tool currently models only one particular browser, characterized by the Envjs library, when generating the test suite. However, the generated test suite can subsequently be run on other browsers as, e.g., Selenium scripts, in order to uncover browser incompatibilities. Alternatively, it may be worthwhile to modify or replace Envjs to model other browsers.

8. REFERENCES

